The use of NIRS (non invasive respiratory support) in COVID -19 patients

H.Abdelaal,

James Hill, university of Central Lancashire

Background

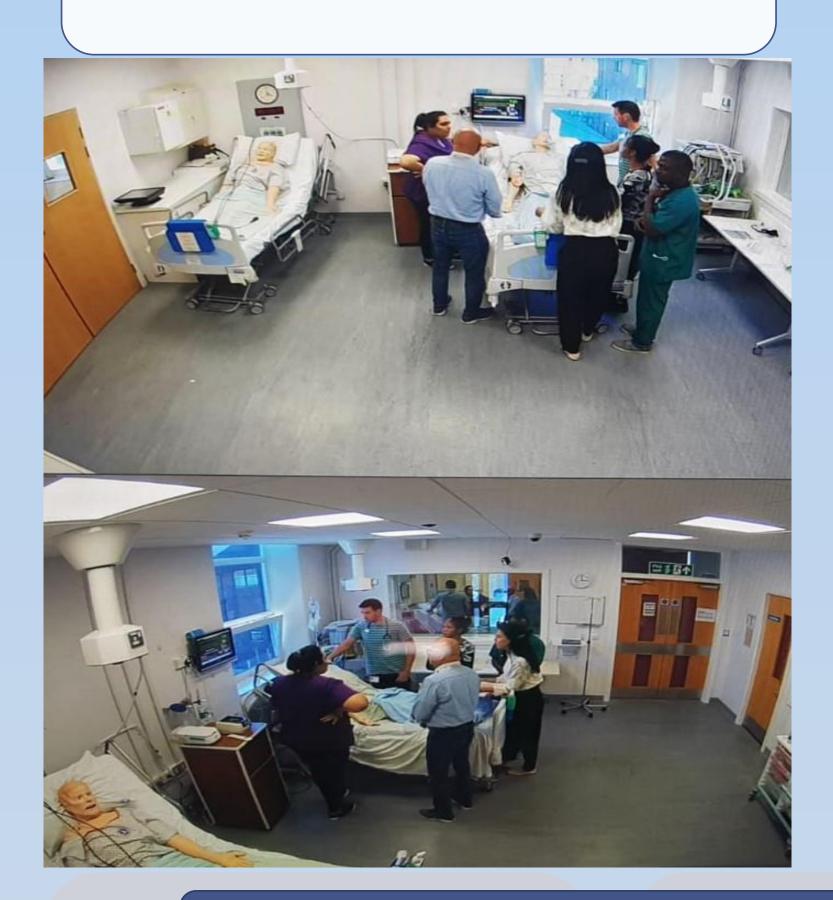
- Recovery RS trial: (Perkins etal, 2021)
- Oxygen therapy for pneumonia in adults.(ZhangY etal, 2012)
- Conventional oxygen therapy versus CPAP (continuous positive airway pressure) as a ceiling of care in ward-based patients with COVID19. (P. Bradley et al., 2021)

Health inequalities

- Differences in chronic disease and disability (ONS, 2022).
- Health inequalities North-West region vs the whole of England, 'North South Divide' (Whitehead et al, 2014)
- Lifestyle and behaviour, such as smoking; Mental health problems, such as anxiety
- Access to health care; Physician confidence (challenging to identify/measure)

Aim and objectives

- To provide evidence for the effectiveness of NIRS in patients with COVID-19 or non-COVID-19 pneumonia and to increase the use of NIRS (CPAP, HFNO high flow nasal oxygen) in patients receiving ward-based ceiling of care.
- To increase patient compliance with NIRS treatment.
- To increase physician knowledge and confidence in terms of administering NIRS treatment


Supporting evidence:

Non-invasive respiratory support (NIRS) in the management of COVID-19: A synthesis of systematic reviews

Patient information leaflet

Although there are different types of masks these are the most common line of the mask line of the mask

Competency training framework

NIRS passport (ESAS)

Please	circle the	numb	er th	hat b	est d	escril	bes h	ow y	ou fe	el NC	W:		
No Pain		0	1	2	3	4	5	6	7	8	9	10	Worst Possible Pain
No Tired	iness s = lack of e	0 nergy)	1	2	3	4	5	6	7	8	9	10	Worst Possible Tiredness
No Drow (Drowsine	vsiness ess = feeling	0 sleepy	1	2	3	4	5	6	7	8	9	10	Worst Possible Drowsiness
No Naus	ea	0	1	2	3	4	5	6	7	8	9	10	Worst Possible Nausea
No Lack Appetite		0	1	2	3	4	5	6	7	8	9	10	Worst Possible Lack of Appeti
No Shor of Breat		0	1	2	3	4	5	6	7	8	9	10	Worst Possible Shortness of B
No Depr	ession on = feeling	0 sad)	1	2	3	4	5	6	7	8	9	10	Worst Possible Depression
No Anxie (Anxiety =	ety : feeling nen	O /ous)	1	2	3	4	5	6	7	8	9	10	Worst Possible Anxiety
Best We	ellbeing g = how you	O feel ou	1 /erall)	2	3	4	5	6	7	8	9	10	Worst Possible Wellbeing
	roblem (for					4	5	6	7	8	9	10	Worst Possible

Using the CFIR (Consolidated Framework for Implementation Research) to assess potential barriers and facilitators and to help develop a logic model

Inner setting	 Capacity of the trust to change Compatibility of leaflet use in acute setting
Outer setting	 the extent to which the leafle is perceived as a way to facilitate use of NIRS
Intervention	 Quality and validity of evidence Fitting of training sessions within workload
Individuals	 staff belief in their own capabilities
process	planningDedicated champions and sense of ownership

EVALUATION

Implementation outcome

Design quality and packing of leaflet

Appropriateness of training
Resources dedicated to the program

Goals and feedback
Observational protocols to assess fidelity

Service outcome

Assessing number of patients complying to (or withdrawing from) treatment within a set of time in comparison to previous data (3months data)

In situ SIM: simulated scenarios in a clinical environment itself rather than in training facilities to assess the extent of improvement in quality of service provided on a trust level rather than individual level

Patient outcome

Qualitative interviews with patients to assess their views and perceptions (to be conducted inpatient after weaning, or outpatient in follow up NIRS clinics)

References:

Perkins GD, Couper K, Connolly B, Baillie JK, Bradley JM, Dark P, De Soyza A, Gorman E, Gray A, Hamilton L, Hart N, Ji C, Lall R, McGowan N, Regan S, Simonds AK, Skilton E, Stallard N, Stimpson E, Yeung J, McAuley DF. RECOVERY- Respiratory Support: Respiratory Strategies for patients with suspected or proven COVID-19 respiratory failure; Continuous Positive Airway Pressure, High-flow Nasal Oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020 Jul 29;21(1):687. doi: 10.1186/s13063-020-04617-3. PMID: 32727624; PMCID: PMC7388424.

Zhang Y, Fang C, Dong BR, Wu T, Deng JL. Oxygen therapy for pneumonia in adults. Cochrane Database Syst Rev. 2012 Mar 14;(3):CD006607. doi: 10.1002/14651858.CD006607.pub4. PMID: 22419316.

Bradley P, Wilson J, Taylor R, Nixon J, Redfern J, Whittemore P, Gaddah M, Kavuri K, Haley A, Denny P, Withers C, Robey RC, Logue C, Dahanayake N, Min DSH, Coles J, Deshmukh MS, Ritchie S, Malik M, Abdelaal H, Sivabalah K, Hartshorne MD, Gopikrishna D, Ashish A, Nuttall E, Bentley A, Bongers T, Gatheral T, Felton TW, Chaudhuri N, Pearmain L. Conventional oxygen therapy versus CPAP as a ceiling of care in ward-based patients with COVID-19: a multi-centre cohort evaluation. EClinicalMedicine. 2021 Oct;40:101122. doi: 10.1016/j.eclinm.2021.101122. Epub 2021 Sep 8. PMID: 34514360; PMCID: PMC8424135.

